Persistent Telomere Damage Induces Bypass of Mitosis and Tetraploidy

نویسندگان

  • Teresa Davoli
  • Eros Lazzerini Denchi
  • Titia de Lange
چکیده

Tetraploidization has been proposed as an intermediate step toward aneuploidy in human cancer but a general mechanism for the induction of tetraploidy during tumorigenesis is lacking. We report that tetraploidization occurs in p53-deficient cells experiencing a prolonged DNA damage signal due to persistent telomere dysfunction. Live-cell imaging revealed that these cells have an extended G2 due to ATM/ATR- and Chk1/Chk2-mediated inhibition of Cdk1/CyclinB and eventually bypass mitosis. Despite their lack of mitosis, the cells showed APC/Cdh1-dependent degradation of the replication inhibitor geminin, followed by accumulation of Cdt1, which is required for origin licensing. Cells then entered a second S phase resulting in whole-genome reduplication and tetraploidy. Upon restoration of telomere protection, these tetraploid cells resumed cell division cycles and proliferated. These observations suggest a general mechanism for the induction of tetraploidization in the early stages of tumorigenesis when telomere dysfunction can result from excessive telomere shortening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity.

Efficient and faithful replication of telomeric DNA is critical for maintaining genome integrity. The G-quadruplex (G4) structure arising in the repetitive TTAGGG sequence is thought to stall replication forks, impairing efficient telomere replication and leading to telomere instabilities. However, pathways modulating telomeric G4 are poorly understood, and it is unclear whether defects in thes...

متن کامل

Ckap2 regulates aneuploidy, cell cycling, and cell death in a p53-dependent manner.

We used DNA microarray screening to identify Ckap2 (cytoskeleton associated protein 2) as a novel p53 target gene in a mouse erythroleukemia cell line. DNA damage induces human and mouse CKAP2 expression in a p53-dependent manner and p53 activates the Ckap2 promoter. Overexpressed Ckap2 colocalizes with and stabilizes microtubules. In p53-null cells, overexpression of Ckap2 induces tetraploidy ...

متن کامل

Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival

A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is u...

متن کامل

Significant Role for p16INK4a in p53-Independent Telomere-Directed Senescence

Telomere attrition in primary human fibroblasts induces replicative senescence accompanied by activation of the p53 and p16(INK4a)/RB tumor suppressor pathways. Although the contribution of p53 and its target, p21, to telomere-driven senescence have been well established, the role of p16(INK4a) is controversial. Attempts to dissect the significance of p16(INK4a) in response to telomere shorteni...

متن کامل

Persistent telomere cohesion triggers a prolonged anaphase

Telomeres use distinct mechanisms (not used by arms or centromeres) to mediate cohesion between sister chromatids. However, the motivation for a specialized mechanism at telomeres is not well understood. Here we show, using fluorescence in situ hybridization and live-cell imaging, that persistent sister chromatid cohesion at telomeres triggers a prolonged anaphase in normal human cells and canc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2010